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PATENT
Attorney Docket No.: 015114-066300US
Client Reference No.: A1055

TECHNIQUES FOR SEQUENTIALLY TRANSFERRING DATA FROM
A MEMORY DEVICE THROUGH A PARALLEL INTERFACE

BACKGROUND OF THE INVENTION
[0001] The present invention relates to techniques for transmitting data from a memory
device through a parallel interface, and more particularly, to techniques for transmitting data

from a memory device using a parallel sequential read mode.

[0002] Programmable integrated circuits such as field programmable gate arrays (FPGAs)
are configured (i.e., programmed) using configuration data. Configuration data used to
configure a programmable’ circuit can be stored in an external memory device such as a
FLASH memory device.

[0003] Configuration data can be transferred in serial or in parallel from a FLASH memory
device to an FPGA. For parallel data transfer, some types of prior art FPGAs interface
directly with the FLASH memory device using 35 input/output (I0) pins on the FPGA.

[0004] The FPGA interfaces directly with the FLASH memory using Asynchronous Read
Mode. In this scenario, 23 address pins are provided by the FPGA. In addition to the 23
address pins, 8 data pins and 4 control pins (total 35) are consumed on the FPGA to

implement this data transfer system.

[0005] Other types of prior art FPGAs interface with the FLASH device via a
microcontroller. The microcontroller is a discrete chip or a controller chip that is packaged
together with the FLASH memory device in a single package. If the microcontroller is a

discrete chip, the microcontroller sits between the FPGA and the FLASH memory device.

[0006] The microcontroller reads data from the FLASH device, then passes the data to the
FPGA. Specifically, the microcontroller generates memory addresses and transfers the
memory addresses to the FLASH device. The FLASH device then transfers data bits that are

stored at the received memory addresses to the FPGA in parallel.

[0007] The FLASH device only transfers data bits to the FPGA in response to memory
addresses received from the microcontroller. This type of data transfer is referred to as
asynchronous read mode. Because each set of data bits needs to be individually addressed by

the microcontroller, data transfer from the FLASH device to the FPGA is slow.
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[0008] Therefore, there is a need to provide faster techniques for transferring configuration
data from an external memory device to a programmable integrated circuit that requires less

pins.

[0009] There is also a need to eliminate the microcontroller from prior art configuration
data transfer techniques and to have the FPGA and FLASH interface directly to save board
space, device cost (for the microcontroller), and development time to write FLASH-FPGA

interface code for the microcontroller.

BRIEF SUMMARY OF THE INVENTION
[0010] The present invention provides techniques for synchronously transmitting data in
parallel from a memory device to a destination circuit using a sequential read mode. The
present invention eliminates the need for a separate microcontroller chip to transfer data from
the memory device. Instead, the destination circuit interfaces directly with the memory

device using less pins than prior art techniques.

-

[0011] According to the present invention, the memory device includes an address counter.
The address counter generates sequential read addresses to access data bits stored in the
memory device. The destination circuit generates a clock signal that controls the address

counter.

[0012] The destination circuit can also transmit a start address to the memory device. The
address counter sequentially generates a new read address in response to transitions in the
clock signal beginning with the start address. Data bits are transferred in parallel from the

memory device to the destination circuit.

[0013] By eliminating the microcontroller and transferring data from the memory device
using a parallel sequential read mode, the present invention requires less pins, saves board
space, reduces cost and design effort, and transfers data at greater speeds. Because the read
mode of the present invention is sequential, it can read data at a faster rate by using faster

Page Mode reads, which are offered by most asynchronous parallel FLASH devices.

[0014] Other objects, features, and advantages of the present invention will become
apparent upon consideration of the following detailed description and the accompanying

drawings, in which like reference designations represent like features throughout the figures.
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BRIEF DESCRIPTION OF THE DRAWINGS
[0015] Figure 1 illustrates a system for sequentially reading data from an external memory

device according to an embodiment of the present invention;

[0016] Figure 2A illustrates a state diagram for a sequential parallel read mode according to

an embodiment of the present invention;

[0017] Figure 2B illustrates a timing diagram for a sequential parallel read mode according

to an embodiment of the present invention;

[0018] Figure 3 is a simplified block diagram of a programmable logic device that can

implement embodiments of the present invention; and

[0019] Figure 4 is a block diagram of an electronic system that can implement

embodiments of the present invention.

DETAILED DESCRIPTION OF THE INVENTION
[0020] The present invention provides techniques for synchronously transferring data in

parallel from an external memory device to a destination circuit in a sequential read mode.

[0021] The destination circuit can be a programmable integrated circuit such as a field
programmable gate array (FPGA), a programmable logic device (PLD), a programmable
logic array (PLA), a configurable logic array, etc. The destination circuit can also be an
application specification integrated circuit (ASIC), or an ASIC/FPGA hybrid. Although the
present invention is discussed primarily in the context of an FPGA as the destination circuit,
it should be understood that the destination circuit can be any suitable integrated circuit and

that FPGAs are discussed herein merely as an example of the present invention.

[0022] Data is transferred to the destination circuit from an external memory device such as
a FLASH or EEPROM memory device. Although the present invention is discussed
primarily in the context of FLASH memory devices, it should be understood that the

principles of the present invention can be applied to any suitable external memory device.

[0023] Figure 1 illustrates a system for transferring parallel configuration data in sequential
read mode. The system of Figure 1 includes a destination circuit 120 and a FLASH memory

device 121. In the example of Figure 1, destination circuit 120 is a field programmable gate
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array (FPGA). Also, the data that is stored in FLASH 121 and transferred to FPGA 120 is

configuration data that is used to configure programmable circuit elements in FPGA 120.

[0024] FPGA 120 transmits a chip enable signal CEO to FLASH memory device 121.
FPGA 120 sets the voltage of signal CEO to a first voltage level Vi or a second voltage level
Vin. When CEQ is at V., memory device 121 can operate in sequential read mode. In
sequential read mode, memory device 121 transfers data bytes to FPGA 120 in response to

sequentially generated read addresses.

[0025] More specifically, when CEO is at Vi, memory device 121 is enabled and enters its
default mode (e.g., Asynchronous Read Mode for most standard parallel flash devices). After
device 121 is enabled, Sequential Read Mode is entered when device 121 sees two edges on
the CLK line according to one embodiment of the present invention that is illustrated in the

timing diagram of Figure 2B.

[0026] In another embodiment, Sequential Read Mode is entered when a "Sequential-
Mode-Command" is asserted via the DQ[7..0] lines as shown in Figure 2B, while holding a
write enable signal (WE#) at V.. When CEO is at Vi, memory device 121 is disabled and

does not operate.

[0027] FPGA 120 transfers an 8-bit start read address to FLASH memory device 121 along
signal lines DQ[7:0] after the Sequential-Mode-Command as shown in Figure 2B. The start
read address can have more than 8 bits (e.g., 20 bits).  Signal lines DQ can include any
suitable number of signal lines, for example 16, if 16-bit parallel data transfer is desired. If
more than 8 bits need to be transferred, and the interface has only 8 signal lines DQ, data byte
transfer is done in multiple cycles. That is, in first cycle send bits 1-8, second cycle send bits
9-16, third cycle send 17-20, etc.

[0028] FLASH memory 121 includes an address counter. In sequential read mode, the
address counter sequentially generates read address signals beginning with a start read

address received from FPGA 120. Thus, the FPGA sets the start read address.

[0029] The address counter generates subsequent read addresses by sequentially
incrementing the start read address. There can be a delay (e.g., 120 ns) between when device
121 receives the start read address and when device 121 begins to output data. Flash 121 is
set to Sequential Read Mode by FPGA 120 prior to sending the Start Read Address. Flash
121 can be set to Sequential Read Mode via 2 clock edges generated by FPGA 120 as
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mention above, in one embodiment. In another embodiment, Sequential Read Mode can be

entered by sending an instruction code via data lines DQ.

[0030] In sequential read mode, the address counter automatically increments the read
address in response to each rising edge (or each falling edge) of clock signal CLK. FPGA
120 generates clock signal CLK to control the transfer rate of data to the FPGA. The
frequency of CLK can be, for example, 25 or 40 MHz. The maximum frequency of CLK is
determined by how fast Flash 121 can provide data. In an alternative embodiment of the
present invention, the address counter automatically decrements the read address in response

to each rising or each falling edge of CLK.

[0031] Inresponse to each new read address, FLASH memor); 121 accesses a byte of data
from its memory array and transfers that data byte along parallel signal lines DQ to FPGA
120. Thus, memory 121 transfers a byte of data along signal lines DQ to FPGA 120 after
each rising or each falling edge of CLK. A byte of data can include any suitable number of
bits (e.g., 8 bits).

[0032] In order to make data transfer faster, a Flash device 121 can access data from its
memory array, in advance, ahead of the address counter. More specifically, a set of data from
neighboring address locations can be accessed at one time using Page Mode Access available
in most standard parallel FLASH devices. However, data is only transferred via the data
lines once the address counter has sequentially counted up to that specific data location in

response to the CLK edge.

[0033] In Figure 1, there are 8 parallel data signal bus lines DQ. In the present invention,
data can be transferred from an external memory device to a destination circuit along any
appropriate number of parallel signals. For example, 16 data bus lines can transfer 16

parallel bits from memory 121 to FPGA 120.

[0034] FPGA 120 also generates an output enable signal OE#. Signal OE# has two values,
Vi and V. The address counter begins to automatically increment the read addresses in
sequential read mode when the OE# signal is V;.. When OE# is at Vi, the address counter
resets the read address to the start read address. When OE# returns to Vi, memory device
121 again provides data on signal lines DQ beginning at the start read address at every rising

or at every falling edge of CLK.
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[0035] The data transfer system of Figure 1 is advantageous, because FPGA 120 does not
use a separate microcontroller chip and only uses 11 pins to transfer parallel data from
external memory device 121. FPGA 120 uses 8 data pins for lines DQ, one clock pin for
CLK, one pin for signal CEO, and one pin for signal OE#. Therefore, more pins on FPGA
120 are freed up for other uses. Prior art systems typically use about 35 pins or a

microcontroller.

[0036] The synchronous and Sequential read mode of the present invention transfers
configuration data at faster speeds than asynchronous read modes by taking advantage of

faster Page/Burst Mode Access offered by many Flash devices.

[0037] The data transfer system of Figure 1 can also be used to transfer data from memory
device 121 to FPGA 120 during the user mode of the FPGA. User mode occurs after the
FPGA has been configured according to a user design and is operated as configured by the
user. Logic circuitry inside FPGA 120 can access data inside device 121 during user mode
using the sequential read mode and the interface shown in Figure 1. By allowing FPGA 120
to access memory device 121 during user mode, the user can use any remaining memory

storage in device 121 for additional memory requirements of the user design.

[0038] Figure 2A illustrates a state diagram for a parallel sequential read mode according to
an embodiment of the present invention. After power-up, when signal CEO goes LOW,
memory device 121 is enabled and enters the default asynchronous read mode (i.e., read array

mode) 201 during which device 121 is prepared to read data from its memory array.

[0039] When clock signal CLK toggles, memory device 121 enters sequential read mode
202. Signal OE# is initially HIGH. FPGA 120 sets the start read address and transfers it to
device 121. A certain time (e.g. 120ns) after OE# goes from HIGH to LOW, memory device
121 starts outputting sequential data to FPGA 120 beginning with the start read address.
When signal CEO goes HIGH, memory device 121 enters standby mode 205.

[0040] When in standby mode 205, if signal CEO goes LOW and CLK toggles, memory
device 121 goes into sequential read mode 202 as shown in Figure 2A. Ata micro level, this
transition occurs in two steps. First, signal CEO goes LOW, causing Flash 121 to exit
Standby Mode 205 and enter the default mode 201 (Read Array Mode). Then, when CLK
toggles, Flash 121 goes into Sequential Read Mode 202.
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[0041] When in state 202, if signal OE# goes back to HIGH and signal CEO0 is still LOW,
memory device 121 resets the address counter to the start read address in state 203. This is to
recover for any errors that may happen during data transmission. FPGA 120 can detect errors
and restart the data download. In state 203, if CEO goes HIGH, memory ‘device 121 is
disabled and goes into standby (state 205). In fact, any time signal CEO goes HIGH memory
device 121 is disabled and goes in to standby.

[0042] When in state 203, when signal OE# goes LOW, memory device 121 goes to state
204 and outputs data to FPGA 120 beginning at the start read address. When signal OE#
goes HIGH again, the address counter in device 121 is reset to the start read address. When

signal CEO goes HIGH, memory device 121 enters standby mode 205.

[0043] The techniques of the present invention are advantageous, in part, because it is fairly
simple to add the Sequential Read Mode interface shown in Figure 1 to an asynchronous-
parallel-FLASH device. Sequential Read Mode mostly usés the existing pins on an
asynchronous-parallel-FLASH device. The only new pin this interface adds on the FLASH

device is the clock pin.

[0044] An alternative embodiment without signal OE# is possible. In this embodiment,
Flash 121 starts outputting data upon receiving the CLK edges (or a READ command). To
reset address counter, FPGA 120 can re-issue the READ command and Start Read Address.

[0045] According to further embodiments of the present invention, the system and interface
shown in Figure 1 supports other operations including write mode, erase mode, and a regular
read mode using the same (or about the same) number of piﬁs that are used in séquential read
mode. During write mode, data is written from FPGA 120 into memory device 121 along
lines DQ. |

[0046] For write operations, a write enable signal can be added to the bus lines shown in
Figure 1 that connect devices 120 and 121. An embodiment without a WE signal is possible.

In this embodiment, a WRITE command is issued instead via the data lines DQ.

[0047] During erase mode, FPGA 120 issues an ERASE command via data lines DQ which
causes memory 121 to erase data stored in memory device 121. In regular (asynchronous)
read mode, FPGA 120 issues 2 READ command and a read address along signal lines DQ,

and subsequently receives the data back along signal lines DQ.
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[0048] The FPGA can transfer a command code to memory device 121 along lines DQ
during a command cycle. The command code indicates whether the memory device is to
read, write, or erase data. A data cycle follows the command cycle, during which data is
transferred between FPGA 120 and memory 121. During some operations such as erase
mode during which there is no data transfer between the two devices, the data cycle can be an
inactive cycle that provid.es memory device 121 time to erase itself. Alternatively, the data
cycle can be an empty cycle in erase mode, or the data cycle can be skipped in erase mode.

In all of the various memory modes that device 121 can operate in, FPGA 120 acts as the

master device and memory 121 acts as the slave device.

[0049] According to another embodiment of the present invention, memory device 121
includes in-system programmability (ISP). ISP is the ability of a user to load FPGA
configuration data into memory device 121 without taking memory device 121 off the board
and putting device 121 in a special FLASH programmer. ISP enables FLASH memory
device 121 to be programmed through a download cable, while FLASH device 121 remains

on the board.

[0050] The ISP feature can be achieved in several ways. For example, JTAG features can be
added to memory device 121. New configuration data can be loaded into the memory array
of device 121 in ISP mode through JTAG pins on memory device 121 using a download
cable. The JTAG pins on device 121 can be dual-purpose, such that the pins act as JTAG

pins in ISP mode, and performs some other function in other modes.

[0051] For example, a custom implementation of ISP via JTAG pins can be accomplished
with 4 JTAG pins, a JTAG controller, and a set of programming registers, without adding
boundary scan cells on input/output (I0) pins. “Custom” means the implementation of ISP
via JTAG pins is not as reccommended by the IEEE standard. TEEE JTAG standard (IEEE
1149.1) requires boundary scan cells on all IO. This could be a major cost adder for Flash
devices, because Flash devices currently don’t have Boundary Scan cells on 10 pins, and

technically, Boundary scan cells on IO pins are not needed to perform ISP.

[0052] As another example, the ISP feature can be implemented through FPGA 120. In
this embodiment, new configuration data is loaded into memory device 121 through FPGA

120. FPGA 120 receives the new configuration data via its JTAG pins. The new

" configuration data is then loaded from FPGA 120 into memory device 121 through parallel

pins DQ.
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[0053] In this embodiment, the user can dedicate additional FPGA IO pins for providing
addresses and control signals to memory device 120. The address and control signals are
used to write the new configuration data into memory device 121. In order to program the
Flash device via the FPGA, the FPGA is loaded with a “Flash Programmer” design via
FPGA’s JTAG pins. Once the “Flash Programmer” design starts running inside the FPGA,
FPGA can receive Flash program data from the FPGA’s JTAG pins and program that data in
to the FLASH device via the FPGA-Flash interface.

[0054] An FPGA can perform ISP on FLASH memory using 35 pins in asynchronous
mode. Alternatively, an FGPA can use the Sequential Read Mode (e.g., with 12 pins) to
perform ISP on FLASH, provided FLASH supports Sequential Read Mode. Sequential Read
Mode also needs to support WRITE and ERASE commands in order to perform ISP via an
FPGA.

[0055] The present invention can also be used to support remote system configuration of an
FPGA. Using remote system configuration, an FPGA device receives new configuration data
from a remote source, updates the content of the external memory device though the FPGA-

Flash interface, and then reconfigures itself by reading the new data from the Flash.

[0056] The FPGA user can load the starting address of a new configuration image in the
flash-controller address counter inside the FPGA. The new configuration image is the
remotefy received configuration data. The flash controller is a circuit inside the FPGA that
interfaces with the external Flash device. When loading the new configuration image from
the external memory device, the FPGA starts downloading data from the memory device
address loaded in the FPGA’s flash-controller address counter by specifying this address as

the start read address when interfacing with the external memory device.

[0057] The present invention can also be used to program a cascaded chain of multiple
FPGAs. Each of the FPGAs in the cascade chain supports a parallel synchronous
configuration interface (e.g. Passive Parallel Synchronous configuration mode found in
Altera FPGAs) to receive the configuration data. One of the FPGAs is a master device that
controls the external memory device and the other FPGA devices. The other FPGA devices
in the chain are slave devices. The slave FPGAs are clocked by a CLK signal generated by
the Master FPGA.

[0058] Once the master FPGA has downloaded its configuration image from the Flash

device, the master FPGA initiates configuration of the first slave device in the chain. Once
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each slave device has received its respective configuration image from Flash, it enables the
subsequent slave device in the chain. Configuration is complete when the last slave device in

the chain has received its configuration image from the Flash.

[0059] Figure 3 is a simplified partial block diagram of an exemplary high-density
FPGA/PLD 300 wherein techniques of the present invention can be utilized. PLD 300
includes a two-dimensional array of programmable logic array blocks (or LABs) 302 that are
interconnected by a network of column and row interconnects of varying length and speed.
LABs 302 include multiple (e.g., 10) logic elements (or LEs), an LE being a small unit of

logic that provides for efficient implementation of user defined logic functions.

[0060] PLD 300 also includes a distributed memory structure including RAM blocks of
varying sizes provided throughout the array. The RAM blocks include, for example, 512 bit
blocks 304, 4K blocks 306 and a MegaBlock 308 providing 512K bits of RAM. These
memory blocks can also include shift registers and FIFO buffers. PLD 300 further includes
digital signal processing (DSP) blocks 310 that can implement, for example, multipliers with
add or subtract features. /O elements (IOEs) 312 located, in this example, around the
periphery of the device support numerous single-ended and differential I/O standards. It is to
be understood that PLD 300 is described herein for illustrative purposes only and that the
present invention can be implemented in many different types of PLDs, FPGAs, ASICs, and

other circuits as well as many different types of external memory devices.

[0061] While PLDs of the type shown in Figure 3 provide many of the resources required
to implement system level solutions, the present invention can also benefit systems wherein a
PLD is one of several components. Figure 4 shows a block diagram of an exemplary digital
system 400, within which the present invention can be embodied. System 400 can be a
programmed digital computer system, digital signal processing system, specialized digital
switching network, or other processing system. Moreover, such systems can be designed for
a wide variety of applications such as telecommunications systems, automotive systems,
control systems, consumer electronics, personal computers, Internet communications and
networking, and others. Further, system 400 can be provided on a single board, on multiple

boards, or within multiple enclosures.

[0062] System 400 includes a processing unit 402, a memory unit 404 and an input/output
(I/O) unit 406 interconnected together by one or more buses. Memory unit 404 can be the

external memory device 121.

10
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[0063] According to this exemplary embodiment, a pi‘ogrammable logic device (PLD) 408
is embedded in processing unit 402. PLD 408 can serve many different purposes within the
system in Figure 4. PLD 408 can, for example, be a logical building block of processing unit
402, supporting its internal and external operations. PLD 408 is programmed to implement
the logical functions necessary to carry on its particular role in system operation. PLD 408
can be specially coupled to memory 404 through connection 410 and to I/O unit 406 through

connection 412.

[0064] Processing unit 402 can direct data to an appropriate system component for
processing or storage, execute a program stored in memory 404 or receive and transmit data
via I/O unit 406, or other similar function. Processing unit 402 can be a central processing
unit (CPU), microprocessor, floating point coprocessor, graphics coprocessor, hardware
controller, microcontroller, programmable logic device programmed for use as a controller,
network controller, and the like. Furthermore, in many embodiments, there is often no need

for a CPU.

[0065] For example, instead of a CPU, one or more PLDs 408 can control the logical
operations of the system. In an embodiment, PLD 408 acts as a reconfigurable processor,
which can be reprogrammed as needed to handle a particular computing task. Alternately,
programmable logic device 408 can itself include an embedded microprocessor. Memory
unit 404 can be a random access memory (RAM), read only memory (ROM), fixed or
flexible disk media, PC Card flash disk memory, tape, or any other storage means, or any

combination of these storage means.

[0066] While the present invention has been described herein with reference to particular
embodiments thereof, a latitude of modification, various changes, and substitutions are
intended in the present invention. In some instances, features of the invention can be
employed without a corresponding use of other features, without departing from the scope of
the invention as set forth. Therefore, many modifications may be made to adapt a particular
configuration or method disclosed, without departing from the essential scope and spirit of
the present invention. It is intended that the invention not be limited to the particular
embodiments disclosed, but that the invention will include all embodiments and equivalents

falling within the scope of the claims.
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